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Thermocapillary flow in a Hele-Shaw cell

By W. B O O S AND A. T H E S S
Center for Physical Fluid Dynamics, Department of Mechanical Engineering,

Dresden University of Technology, 01062 Dresden, Germany

(Received 12 July 1996 and in revised form 11 August 1997)

We formulate a simple theoretical model that permits one to investigate surface-
tension-driven flows with complex interface geometry. The model consists of a Hele-
Shaw cell filled with two different fluids and subjected to a unidirectional temperature
gradient. The shape of the interface that separates the fluids can be arbitrarily complex.
If the contact line is pinned, i.e. unable to move, the problem of calculating the flow
in both fluids is governed by a linear set of equations containing the characteristic
aspect ratio and the viscosity ratio as the only input parameters. Analytical solutions,
derived for a linear interface and for a circular drop, demonstrate that for large aspect
ratio the flow field splits into a potential core flow and a thermocapillary boundary
layer which acts as a source for the core. An asymptotic theory is developed for this
limit which reduces the mathematical problem to a Laplace equation with Dirichlet
boundary conditions. This problem can be efficiently solved utilizing a boundary
element method. It is found that the thermocapillary flow in non-circular drops has
a highly non-trivial streamline topology. After releasing the assumption of a pinned
interface, a linear stability analysis is carried out for the interface under both transverse
and longitudinal temperature gradients. For a semi-infinite fluid bounded by a freely
movable surface long-wavelength instability due to the temperature gradient across
the surface is predicted. The mechanism of this instability is closely related to the
long-wave instability in surface-tension-driven Bénard convection. A linear interface
heated from the side is found to be linearly stable. The possibility of experimental
verification of the predictions is briefly discussed.

1. Introduction
When the temperature at the interface between two immiscible fluids is not uniform,

a flow may be induced due to the temperature dependence of surface tension (Davis
1987). This flow is usually called thermocapillary convection or Marangoni convection.
It plays an important role in Bénard convection in shallow fluid layers (Koschmieder
1993), in chemical engineering (Edwards, Brenner & Wasan 1991), as well as in crystal
growth and other materials processing technologies (Hammerschmid 1987).

Theoretical and experimental study of thermocapillary flow is difficult for two
reasons. On the one hand, thermocapillary flow involves a delicate interplay between
the inherent nonlinearity of the basic equations of fluid dynamics and the dynamics of
the phase boundary with complex geometry. On the other hand, thermocapillary flow
on Earth is usually accompanied by buoyancy-driven convection. Hence, observation
of the former in its pure form is nearly impossible.

The goal of the present work is to propose a simple, yet experimentally realizable,
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model that permits us to study pure thermocapillary convection in complex geome-
tries. We shall focus on the Stokes flow regime, where nonlinearities of the governing
equations can be neglected. This assumption permits, to the greatest possible extent,
the separation of the aspect of complex interface shape from the complexity due the
nonlinearity of the basic equations. Moreover, the two-dimensionality of the system
provides the opportunity of making the flow perpendicular to the gravity field, thereby
permitting one to study thermocapillary flow isolated from the influence of buoyancy
under terrestrial conditions.

An additional motivation for the investigation of linearized thermocapillary flow
in complex geometries comes from the observation that boundary integral techniques
which have proved extremely useful in ordinary (isothermal) viscous flows (Pozrikidis
1992) have not been applied to thermocapillary problems yet, although there is
good reason to believe that such application would be of considerable interest. For
instance, a profound understanding of pulmonary flow (i.e. flow in the lungs of
humans and land animals, see Grotberg 1994 for a review) requires, among other
things, a modelling of surface-tension-driven flows in the complex shaped alveoli (the
terminal air sacs in which the diffusional gas exchange takes place) due to surfactants.
Since surfactants play an analogous role in modifying the surface tension to the
temperature field, and since the Reynolds number is often small, boundary integral
techniques can be used to treat the important problem of surfactant spreading (Jensen
& Grotberg 1992) in more realistic complex geometries than the planar one. From
the fundamental viewpoint, boundary integral techniques are deemed appropriate
to extend our understanding of the long-wave instability in surface-tension-driven
Bénard convection (VanHook et al. 1995) beyond linear stability theory (Scriven
& Sternling 1964) and weakly nonlinear model equations (Davis 1983, 1987) by
taking into account strong surface deformations. Before tackling the complex three-
dimensional problems mentioned above, it is desirable to formulate and test boundary
integral techniques for thermocapillary flows using prototype problems of which the
present model is likely to be the simplest non-trivial representative.

The system under consideration, to be defined in the following section, is a gen-
eralization of previous experimental and theoretical work by Siekmann (1979) and
Bratuhin & Zuev (1984). Their model consists of two fluids enclosed in a narrow gap
between two parallel horizontal plates (Hele-Shaw cell) subject to a uniform horizon-
tal temperature gradient. The main difference from the previous work consists in the
assumption that the phase boundary between the two fluids can have arbitrarily com-
plex shape. In §3 we derive the set of equations governing the thermocapillary flow in
a Hele-Shaw cell. Section 4 contains exact solutions of the equations for the case of a
linear interface and for a circular drop. In §5 we develop an asymptotic theory appro-
priate to the modelling of large-aspect-ratio structures. Furthermore, in §6, we apply
the theory to non-circular drops with two-fold and four-fold symmetry, using the
boundary element method. Section 7 addresses some questions of surface-wave insta-
bilities for the particular case of non-wetting fluid. In §8 we summarize our conclusions
and discuss the possibility of experimental verification of our theoretical predictions.

Before embarking on a systematic treatment of the problem, it is useful to summa-
rize briefly previous work on surface-tension-driven flow in complex geometries. The
subject of steady thermocapillary-driven motion of a single spherical droplet in an
unbounded fluid subject to a constant temperature gradient was first addressed in the
work of Young, Goldstein & Block (1959). Later on, this problem was extended to
deformable droplets by Bratuhin (1975) and to time-dependent flow by Galindo et al.
(1994). One particular problem, namely the steady thermocapillary-driven motion of
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a large droplet contained in a tube, was analysed by Wilson (1993). Another aspect of
surface-tension-driven flow was studied by Ehrhard & Davis (1991), who investigated
the spreading of liquid drops on horizontal plates subject to capillary, thermocapillary
and gravity forces. This list of works and authors can be extended.

The classical Hele-Shaw problem with constant surface tension has been and is
still being intensively studied in the context of pattern formation, nonlinear interface
dynamics, and formation of singularities. We refer the reader to the work of Bensimon
et al. (1986) for an introductory review. Less is known about thermocapillary-driven
flow in Hele-Shaw cells. Siekmann (1979) has presented a theory of slow motion of
a circular bubble subject to a horizontal temperature gradient. However, experiments
of Bratuhin & Zuev (1984) did not show convincing agreement with that theory – a
question that will be discussed in the light of our results in the last section.

In a recent experimental work on bubble motion in a Hele-Shaw cell Bush (1997)
has identified a novel wake structure characterized by an intense jet produced by
surface-tension gradients. It will be shown below that this can be partly understood
in the framework of the present theory (although a three-dimensional analysis would
be necessary to describe completely the reported experiments).

2. Definition of the system
We consider two immiscible viscous fluids confined in a Hele-Shaw cell formed by

two parallel plates with separation h, as sketched in figure 1(a). In contrast to previous
studies of Siekmann (1979) and Bratuhin & Zuev (1984) which were focused on a bub-
ble in a wetting fluid (see figure 1(b)), we are interested here in a situation sketched in
figure 1(c) where the interface possesses two contact lines. Moreover, we shall suppose
that the contact lines are unable to move. Such behaviour, often referred to as pinning
(de Gennes 1985), is the macroscopic manifestation of microscopic fluctuations in the
mechanical or chemical properties of the plates. For our purpose it is sufficient to note
that pinning of contact lines can be achieved by endowing the plates with artificial
roughness on a microscopic scale. The assumption of a pinned contact line permits
one to study flows with arbitrarily complex interface shape without the need to con-
sider their dynamical evolution. In the §7 where movable interfaces are considered we
shall make some necessary comments about the dynamics of contact lines.

Let the Hele-Shaw cell be arranged perpendicular to the gravity field such that
buoyancy has no influence on the interface shape and on the motion of the fluids
– a condition that will be made more precise in the next section. Furthermore the
system is heated at one side and cooled at the other so that the plates are subject to
a constant horizontal temperature gradient.

The distance between the plates is supposed to be sufficiently small for the imposed
temperature gradient to extend into the fluid without modification, which is equivalent
to the assumption of small Péclet number (for details see the Appendix). Since the
temperature field within the fluid is not constant, a flow is induced at the interface
between the fluids whose surface tension α is assumed to depend on temperature. For
most fluids, surface tension decreases with increasing temperature, and the dependence
of surface tension on temperature can be approximately written in the linear form

α = αo − γ(T − To), (2.1)

where the mostly positive coefficient γ = −∂α/∂T is called the thermal coefficient of
surface tension, and T is temperature. The resulting flow is called thermocapillary
flow.
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Figure 1. Thermocapillary flow in a Hele-Shaw cell: (a) a sketch of the problem considered, (b) a
system without a contact line, as opposed to a system (c) involving contact lines as considered in
the present work, (d) a sketch of the curvilinear coordinate system.

3. Mathematical formulation of the problem
We arrange the cell perpendicular to the gravity force and introduce an orthogonal

coordinate system (x1, x2, x3) with basis unit vectors (e1, e2, e3). Here the x3-axis
is vertical to the plane of the cell and opposite to the direction of gravity. The
coordinates (x1, x2) are in the plane of the cell and the origin is chosen to be at
the interface between the bottom plate (x3 = 0) and the fluid. The top plate is then
located at x3 = h. Throughout this work we label one fluid as (1), and the other as
(2) and denote the corresponding quantities by superscripts (1) or (2). If equations
are valid for both fluids, we will omit the superscript.

Both plates, which are supposed to have high thermal conductivity, are subjected
to a homogeneous horizontal temperature gradient of the form

T = To + β(t · x), (3.1)

where β is the absolute value of temperature gradient and t represents the unit vector
in the direction of the temperature gradient.
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Our mathematical model rests on the following three assumptions.
First, we assume that the distance h between the plates is sufficiently small for

gravity to have negligible influence on the shape of the interface. In this case the
ratio h2/a2 < 1 between the distance h and the capillary constant a2 = 2α/ρg is
small. This condition expresses the fact that the pressure forces due to surface tension
pα ∼ α/h should be sufficiently strong to prevent the hydrostatic pressure difference
pg ∼| ρ1− ρ2 | gh from allowing the heavy fluid (density ρ1) to displace the light fluid
(density ρ2) towards the top plate. For example, if we take a Hele-Shaw cell with depth
h = 1 mm and silicone oil NM 10 we have h2/a2 ≈ 0.25, ps ≈ 15.2 Pa, pg ≈ 7.5 Pa,
and the condition is satisfied.

Second, we shall assume that the Reynolds number Re = uh/ν evaluated with
the thermocapillary velocity scale u = γβh/µ, which is the relevant velocity of the
problem at hand, is small. Here ν and µ = ρν denote the kinematic and dynamic
viscosity respectively. Indeed, for our previous example with β = 100 K m−1 we
obtain u ∼ 0.63 mm s−1 and Re = 6.3 × 10−3. This assumption permits us to use
the linear Stokes equation instead of the nonlinear Navier–Stokes equation for the
description of the flow.

Third, we suppose that the temperature gradient (3.1) imposed along the plates is
passed into the fluids without being affected by the different heat conductivities of
the fluids and their motion. The neglect of fluid motion is justified if heat diffusion
dominates over heat advection – a condition that is expressed by the smallness of the
Péclet number Pe = uh/κ where κ is the heat diffusivity of the fluid. This condition
can always be achieved by choosing sufficiently small thickness h. In our previous
example with silicone oil Pe < 1 if h < 0.2 mm. Note that, even at zero Péclet
number, the temperature of the fluids will in general differ from that of the plates
due to the finite heat conductivities of the fluids. However, it will be shown in the
Appendix that even for the worst case, when the heat conductivity of one fluid is
zero, the departure of the mean temperature 〈T 〉 = h−1

∫
Tdz of the other fluid from

the imposed temperature (3.1) is always smaller than βh/π. It is thereby of the same
order as other terms, neglected in the course of the derivation of the equations of
Hele-Shaw flow.

3.1. Governing equations

Under the conditions Ca = µu/α� 1 (small Capillary number), Re� 1, and Pe� 1
formulated above, the motion of the incompressible fluids can be described by the
Stokes equation

∇p = µ∆V , (3.2)

where p is the pressure and V is the fluid velocity field. In addition, we have for each
liquid the mass conservation equation

divV = 0, (3.3)

We use the same method for converting the three-dimensional equations (3.2), (3.3)
into a two-dimensional model as is done in the classical Hele-Shaw problem, namely
averaging over the height h of the cell. For that purpose we assume the velocity field
to be of the form

V (x1, x2, x3) = v(x1, x2)w(x3), (3.4)

where v = v1e1 +v2e2 represents the unknown two-dimensional velocity field in the cell
and w(x3) = 6(x3h − x2

3)/h
2 is a single scalar function which describes the Poiseuille

profile of the velocity over the height of the cell. An evaluation of the x3-component



310 W. Boos and A. Thess

of the Stokes equation with the velocity field (3.4) leads to the condition ∂p/∂z = 0.
Thus the pressure is a function of the horizontal coordinates only. Observe that the
independence of p of the vertical coordinate is a consequence of the assumption that
the vertical velocity vanishes.

Inserting (3.4) into the Stokes equation (3.2) and continuity equation (3.3) and
averaging by integrating with respect to x3, we obtain the equations for pressure p
and two-dimensional velocity v as

∇p = µ
(
∆v − k2v

)
, (3.5)

div v = 0, (3.6)

where k2 = 12/h2. Looking at equation (3.5) one can see that it differs from the
two-dimensional Stokes equation by the additional dissipative term −k2v. This term
may be interpreted as the average friction force due to the presence of the plates.
By omitting the term ∆v, we would obtain the so-called Darcy approximation of
the Navier–Stokes equation, which is often used for the consideration of fingering
in Helle-Shaw cells, penetration into porous media, etc., and describes potential flow.
By contrast, in our case the presence of the second-order term is crucial, because the
thermocapillary flow is driven by shear stresses and can therefore in general not be
potential.

For two-dimensional flows it is convenient to rewrite the problem in terms of the
streamfunction Ψ (x1, x2) defined by

v = rot (Ψe3),

which automatically satisfies the incompressibility constraint. The equation for Ψ is
obtained by taking the curl of (3.5) and has the form

∆
(
∆− k2

)
Ψ = 0. (3.7)

Once Ψ is known, the pressure can be calculated by solving the Poisson equation

∆p = 0, (3.8)

with the boundary condition

∇p = µ rot (∆− k2)Ψe3. (3.9)

3.2. Curvilinear coordinate system

We introduce a curvilinear coordinate system, which is adjusted to the interface. This
coordinate system contains all the information about the geometry of the interface
and will be useful to formulate the boundary conditions in an invariant form.

The projection of the interface between the two fluids onto the (x1, x2)-plane gives
a curve Γ . It is assumed that this curve has no singularities. The curve can be
either closed (if we consider a droplet in a liquid), or open (if both liquids are
unbounded). Let the curve Γ be described by the vector function X (s) = X1(s)e1 +
X2(s)e2 parametrized in terms of the arclength s along Γ . The orientation of Γ is
chosen such that liquid (1) is on the left side when moving along Γ in the direction
of increasing s. Furthermore we introduce the unit tangential vector τ (s) = dX/ds,
the unit normal vector n(s) = e3 × τ , and the curvature K(s) = |d2X/ds2|.
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We define a curvilinear coordinate system (ξ, η) with the unit vectors (τ , n) by the
transformation

x1 = X1(ξ) + (n · e1)η, x2 = X2(ξ) + (n · e2)η, (3.10)

which characterizes each point (x1, x2) by the location ξ of its projection onto the
phase boundary and by its distance η from Γ . The structure of this local coordinate
system is sketched in figure 1(d). For η = 0 the coordinate ξ is equivalent to the
arclength s along the interface. The reader can easily verify that the coordinate
system is orthogonal.

The curvilinear scale factors, called Lamé’s coefficients, are then

`1 = 1− (n · d2X/ds2)η and `2 = 1.

In what follows `(s) will be used to specify the non-trivial first Lamé coefficient.
For details of the derivation of (3.10) and the curvilinear scale factors the reader is
referred to Aris (1989). In general, the coordinate system (ξ, η) is non-singular only
in a thin layer around the curve (−maxs |K(s)| 6 η 6 maxs |K(s)|). However, this is
sufficient for our analysis since the main purpose of the introduction of ξ and η is to
formulate the boundary conditions and an asymptotic boundary-layer theory in the
immediate vicinity of the interface.

To conclude this section we write down the explicit expressions for the velocity
components and the Laplacian

vξ =
∂Ψ

∂η
, vη = −1

`

∂Ψ

∂ξ
, (3.11)

∆ =
1

`

(
∂

∂ξ

1

`

∂

∂ξ
+

∂

∂η
`
∂

∂η

)
. (3.12)

3.3. Boundary conditions

The basic kinematic and dynamic conditions on any material fluid boundary Γ ensure
the continuity of both velocity and shear stress with allowance for surface tension. We
denote the jump of any quantity g across Γ as [g], so that for instance [v] = v(1)− v(2)

on Γ . Since the interface is pinned, the normal velocity components must vanish at
Γ , which is expressed by

n · v = 0. (3.13)

The continuity of tangential velocity requires

[τ · v] = 0. (3.14)

Continuity of shear stress implies

[τ · σ · n] = −∇α, (3.15)

where σ is the stress tensor with components

σij = −pδij + µ

(
∂vi

∂xj
+
∂vj

∂xi

)
, (3.16)

(i, j = 1, 2) and α is the surface tension. At infinity the outer fluid is at rest, i.e.

lim
η→∞

v = 0, (3.17)

where η is distance from interface. Inserting (2.1), (3.1), (3.11), into (3.14)–(3.17) we
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find the boundary conditions for the streamfunction Ψ in the coordinate system (ξ, η),
as

∂Ψ

∂ξ
= 0 at η = 0, (3.18)[

∂

∂η
Ψ

]
= 0 at η = 0, (3.19)[

µ`
∂

∂η

1

`

∂Ψ

∂η

]
= γ β (τ · t) at η = 0, (3.20)

lim
η→∞

Ψ = Const, (3.21)

with γ denoting a positive constant. Since Ψ is only determined up to an arbitrary
constant, (3.18) is equivalent to the requirement that Ψ (1) = Ψ (2) = 0 on Γ .

3.4. Dimensionless form

We scale the spatial coordinates (x1, x2) as well as (ξ, η) by the length scale L which
characterizes the lateral extent of the object under consideration. In the absence of a
lateral scale, such as for the particular case of a straight interface between two semi-
infinite fluids, we shall use L = h. Distinguishing the new dimensionless variables with
a tilde we have

x1 = Lx̃1, x2 = Lx̃2, ξ = Lξ̃, η = Lη̃. (3.22)

Since the convection is a balance between thermocapillary stresses proportional to
γβ and the viscous stresses proportional to µv/L ∼ µΨ/L2, we can introduce a
dimensionless streamfunction and viscosity according to

Ψ =
γβL2

µ(1) + µ(2)
Ψ̃ , (3.23)

µ = (µ(1) + µ(2))µ̃. (3.24)

Introducing k = L−1k̃ (which is equivalent to k̃2 = 12L2/h2) and dropping the
tilde in all quantities we can write down the governing equations for both fluids in
dimensionless form as

∆
(
∆− k2

)
Ψ = 0. (3.25)

The boundary conditions (3.18)–(3.21) become

Ψ = 0 at η = 0, (3.26)[
∂

∂η
Ψ

]
= 0 at η = 0, (3.27)[

µ`
∂

∂η

1

`

∂Ψ

∂η

]
= (τ · t) at η = 0, (3.28)

Ψ = Const as η →∞. (3.29)

The dimensionless system (3.25)–(3.29) contains two parameters, namely the aspect
ratio k =

√
12L/h and the viscosity ratio µ̂ = µ(1)/(µ(1) + µ(2)). For a given curve Γ

and the associated Lamé coefficient `(s) the system completely determines the stream
functions in both fluids.

If µ̂ = 0 then fluid (1) is inviscid and can be associated with air. On the other
hand, if µ̂ = 1 then fluid (2) is inviscid. In these two limiting cases our problem can
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be solved only for the viscous fluid because for inviscid fluids the Reynolds number
is not limited (Re→∞) and the Stokes approximation is not valid.

4. Analytical solutions
For the particular cases of a linear interface and for circular drops and bubbles

the system (3.25)–(3.29) has exact analytic solutions. These solutions provide a useful
key for the qualitative understanding of flows in more complex geometries to be
considered in §6.

4.1. Linear interface

Consider two semi-infinite fluids bounded by a common linear interface x2 = 0 which
are exposed to a temperature gradient along the interface. We choose the coordinates
(x1, x2) as Cartesian coordinates (x, y) with the x-axis oriented in the direction of the
temperature gradient ∇T , so that the first liquid is above and second liquid below
the x-axis. Since the only available length scale of the problem is the height of the
cell, we use L = h, which leads to k2 = 12. Using the fact that `(s) = 1, τ · t = 1 and
assuming that the flow is independent of x, we are left with the equation(

d2

dy2
− 12

)
d2Ψ

dy2
= 0 (4.1)

for the streamfunctions in both fluids and with the boundary conditions

Ψ (1) = Ψ (2) = 0, (4.2)

dΨ (1)

dy
=

dΨ (2)

dy
, (4.3)

(1− µ̂)
d2Ψ (2)

dy2
− µ̂d2Ψ (1)

dy2
= 1, (4.4)

at y = 0. The solution to this problem is easily found as

Ψ (1) =
e −
√

12y − 1

12
, (4.5)

Ψ (2) =
1− e

√
12y

12
. (4.6)

This solution corresponds to the velocity field

v(1)
x = −e−

√
12y

√
12

, (4.7)

v(2)
x = −e

√
12y

√
12

(4.8)

(and vy = 0), which describes a unidirectional flow along the interface which is
directed towards the cooled side and decays exponentially with increasing distance
from the interface. Observe that the spatial decay rate is equal in both fluids, owing
to the absence of any characteristic length scale in the problem other than the
plate separation. Moreover, it is worth noting that the solution does not contain the
viscosity ratio, which disappears from the boundary conditions (4.4) on account of
the symmetry of the streamfunction.
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The linear interface is a useful model to assess the quality of the two-dimensional
approximation because it admits an exact three-dimensional solution as we show next.

In order to solve the three-dimensional Stokes problem (3.2), (3.3) we assume zero
pressure gradient along the interface and a velocity field of the form V = Ux(y, z)ex.
The continuity equation is then automatically satisfied, and the Stokes equation
transforms into the Poisson equation

∆Ux = 0. (4.9)

The no-slip boundary condition at the upper and lower plates reads

Ux(y, 0) = Ux(y, 1) = 0, (4.10)

while the three-dimensional version of the Marangoni boundary condition (3.15) takes
the form

(1− µ̂)
∂U(2)

x (0, z)

∂y
− µ̂∂U

(1)
x (0, z)

∂y
= 1. (4.11)

A straightforward calculation provides the exact solution

U(1)
x = − 4

π2

∞∑
n=1

e−π(2n−1)y

(2n− 1)2
sin [π(2n− 1)z],

U(2)
x = − 4

π2

∞∑
n=1

eπ(2n−1)y

(2n− 1)2
sin [π(2n− 1)z],

for the velocity fields in both fluids. In order to compare with the two-dimensional
model we average these expressions with respect to z and obtain

Ū(1)
x = − 8

π3

∞∑
n=1

e−π(2n−1)y

(2n− 1)3
, (4.12)

Ū(2)
x = − 8

π3

∞∑
n=1

eπ(2n−1)y

(2n− 1)3
, (4.13)

where the bar denotes averaged value. Now we can compare the averaged three-
dimensional solutions (4.12), (4.13) with the solutions (4.7), (4.8). Since the solutions
are symmetric figure 2 gives the velocities of fluid (1) only. This figure shows an
excellent agreement between the full three-dimensional Stokes problem and the two-
dimensional Hele-Shaw model. The largest difference occurs at the interface (y = 0).
The maximum relative error is 6.4%. This result encourages us to use the model for
the analysis of more complex situations not amenable to three-dimensional analytic
treatment.

For later use we calculate the volume fluxes of both liquids across the y-axis as

Q(1) =

∫ ∞
0

∂Ψ (1)

∂y
dy = Q(2) =

∫ 0

−∞

∂Ψ (2)

∂y
dy = − 1

12
,

or in dimensional form

Q(1) = Q(2) = − γβ h3

12(µ(1) + µ(2))
.

The solution for the linear interface together with the expression for the volume
flux provides us with all ingredients necessary for a qualitative understanding of
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Figure 2. Flow at the linear interface: comparison of the velocity given by the two-dimensional
Hele-Shaw model (dashed line) with a solution of the three-dimensional linear problem (solid line).

thermocapillary convection in arbitrarily complex geometries. For objects with lateral
size L much larger than h, the thermocapillary forces penetrate only in a boundary
layer with thickness of the order h and create jet-like flows with intensity proportional
to the component of the temperature gradient along the interface. Since for a curved
interface this intensity varies from point to point, the flow rate Q within the boundary
layer will in general not be constant. By continuity, however, any variation dQ/ds
entails injection of fluid (or suction) into the bulk of the fluid. This phenomenon will
be illustrated in the next section.

4.2. Circular bubbles and droplets

In this case it is convenient to use polar coordinates (r, ϕ) with the origin located
at the centre of the drop and the polar axis directed in the direction of temperature
gradient. As the characteristic length we take the radius of the droplet L = R.
Then the curvature is constant (K = 1), and the coordinates (r, ϕ) are related to the
coordinates (ξ, η) through the conditions ξ = ϕ, η = 1− r. The curvilinear scale factor
is ` = 1 − η = r. From (3.11) the well-known relations between the components of
the velocity and the streamfunction vϕ = −∂Ψ/∂r, vr = r−1∂Ψ/∂ϕ can be obtained.
The circular problem is thus governed by the equation(

1

r

∂

∂r
r
∂

∂r
− 1

r2

∂2

∂ϕ2

)(
1

r

∂

∂r
r
∂

∂r
− 1

r2

∂2

∂ϕ2
− k2

)
Ψ = 0, (4.14)

and the boundary conditions at r = 1

Ψ (1) = Ψ (2) = 0, (4.15)

∂Ψ (1)

∂r
=
∂Ψ (2)

∂r
, (4.16)

µ̂r
∂

∂r

1

r

∂Ψ (1)

∂r
− (1− µ̂)r

∂

∂r

1

r

∂Ψ (2)

∂r
= sin (ϕ). (4.17)

The solution to this system can be evaluated in a straightforward manner as

Ψ (1) = A1

{
I1(kr)

I1(k)
− r
}

sin (ϕ), (4.18)
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Ψ (2) = A2

{
K1(kr)

K1(k)
− 1

r

}
sin (ϕ), (4.19)

where In, Kn are modified Bessel functions of first and second kind of order n respec-
tively, and A1, A2 are constants, which are determined by the boundary conditions
(4.15)–(4.17) and are given by

A1 = −I1(k)K0(k)/C, (4.20)

A2 = I2(k)K1(k)/C, (4.21)

C = µ̂(k2I1(k)− 2kI2(k))K0(k) + (1− µ̂)(k2K1(k) + 2kK0(k)I2(k)). (4.22)

Before we analyse this solution, it is useful to notice that the viscosity ratio does not
enter the functional dependence of the flow field. It appears only in the multiplier
common to both flows. This can be easily understood by observing that the continuity
of the tangential velocity v(1) ∼ v(2) together with the estimate µ(1)v(1)/h+µ(2)v(2)/h ∼ γβ
originating from boundary condition (3.20) imply that the velocity in both fluids is
of the same order v ∼ γβh/µmax where µmax denotes the viscosity of the more viscous
fluid. Notice that the functional form of the solution of the classical problem for
thermocapillary motion in spherical droplets (Young et al. 1959) does not depend on
the viscosity ratio either.

We now discuss the question of how the solution depends on the parameters. The
dependence on the parameter µ̂ is trivial, therefore it is sufficient to consider the two
limiting cases, µ̂ = 1 and µ̂ = 0 corresponding to a drop and a bubble, respectively. In
figure 3(a) the streamfunction inside a droplet is plotted for k = 2

√
12. In the vicinity

of the interface the fluid flows in the direction of decreasing temperature. The fluid
returns in the core of the droplet. As a result, inside the droplet we have two vortices
which are symmetric relative to the temperature gradient. In figure 3(b) we show the
vorticity Ω = −∆Ψ corresponding to the flow in figure 3(a). If we fix the height of the
cell h and enlarge the radius of the droplet, the parameter k becomes larger. One can
see that for large aspect ratios the vorticity is very small in the core but strong at the
interface. The largest values of Ω and of the velocity are at the interface, where the
tangent vector of the interface is parallel to the temperature gradient. At these points
the largest Marangoni forces are generated (see (3.28)). As k increases the boundary
layer at the interface becomes thinner and the return flow aligns with the temperature
gradient (figure 3c).

The observed evolution of the flow field with increasing k is in agreement with
the qualitative picture drawn on the basis of the solution for the linear interface.
As the aspect ratio of the drop increases, the action of the thermocapillary forces
becomes confined to the boundary layer with thickness of the order δ ∼ k−1 in the
vicinity of the interface. Within this thermocapillary boundary layer strong vorticity
gradients exist as a result of the shear stress. The role of the boundary layer consists
in pumping fluid from the hot end of the bubble towards the cold end and in ejecting
the fluid into the volume. For k � 1 the core flow is close to potential flow driven by
the ‘input’ provided from the boundary layer, as can be seen in figure 3(d).

Figure 4 illustrates the flow structure outside a bubble, with µ̂ = 0. Again we observe
thin boundary layers at the interface and return flow in the core. The behaviour of
the flow with increasing k is similar to the first case. However, the return flow does
not become parallel to the temperature gradient. The boundary layers visible in figure
4 are strikingly similar to recent experimental findings of Bush (1997) who observed
‘edge jets’ at a bubble–air interface in a Hele-Shaw cell. In contrast to our case, these
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grad T

Figure 3. Analytic solutions for a circular drop: (a, c) isolines of streamfunction Ψ (1) (µ̂ = 1) for
different values of k: (a) k = 2

√
12; (c) k = 20

√
12 and (b, d) vorticity Ω(1) = −∆Ψ (1) for the same

values of k as (a, c).

jets were driven by an inhomogeneous surfactant distribution, produced by a three-
dimensional rolling motion of the bubbles. Nevertheless, it is remarkable that the
present simple two-dimensional model can qualitatively capture these observations.

5. Asymptotic solution
As we have seen above, by increasing k the thickness of the thermocapillary

boundary layer tends to zero as δ ∼ k−1, and the vorticity of the core flow becomes
very small. It is then natural to attempt the construction of an asymptotic theory
for k →∞ using matched asymptotic expansions. In our explanation we shall closely
follow Bender & Orszag (1978), omitting all details and representing only the main
steps. To obtain solutions of the system (3.25) with boundary conditions (3.26)–(3.29)
in the limit k → ∞ we split each fluid in two regions, namely the boundary layer
|η| < δ and the core |η| > δ. Quantities referring to each region will be denoted
by subscripts l, c respectively. Equations which describe the flow in each region are
obtained from the governing equation (3.25). To examine the boundary layers we use
the curvilinear coordinate system (ξ, η) and introduce the stretched boundary layer
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Figure 4. Analytic solutions for a circular bubble: (a, c) isolines of streamfunction Ψ (2) (µ̂ = 0) for
different values of k: (a) k = 2

√
12; (c) k = 20

√
12 and (b, d) vorticity Ω(2) = −∆Ψ (2) for the same

values of k as (a, c).

coordinate ζ = kη. Using the representation of the Laplace operator given in (3.12),
substituting the new coordinate ζ, dividing by k4, and taking the limit k → ∞, we
obtain to leading order the boundary layer equation

∂4Ψl

∂ζ4
− ∂2Ψl

∂ζ2
= 0. (5.1)

In writing this formula it is assumed that limk→∞K/k = 0 which means that the
interface has no curvature singularities. The general solution of equation (5.1) for
each fluid is

Ψl = B1 + B2ζ + B3e
ζ + B4e

−ζ , (5.2)

where the unknown coefficients are functions of the ‘slow’ coordinate ξ along the
interface. The requirement that Ψ (1)

l must remain finite in the limit ζ → ∞ and Ψ
(2)
l

in the limit ζ → −∞ together with the boundary conditions (3.26)–(3.29) determine
the unknown parameters as

B
(1)
2 = B

(2)
2 = B

(1)
3 = B

(2)
4 = 0, B

(1)
1 = −B(1)

4 ,

B
(2)
1 = −B(2)

3 , B
(2)
3 = −B(1)

4 , B
(1)
4 = k−2(τ · t).
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In writing B(1)
4 we have neglected terms of higher order than k−2. If we denote B(1)

4

as C and return to the coordinate η , then the streamfunctions of the boundary layer
solutions are

Ψ
(1)
l = C

(
e−kη − 1

)
, (5.3)

Ψ
(2)
l = C

(
1− ekη

)
. (5.4)

Notice that the boundary layer solution is entirely determined by the temperature
field at the interface. Moreover, the functional dependence of the streamfunction on
the transverse coordinate η is identical to that of the linear-interface solution with
the effective temperature gradient τ · t. Far away from the interface, i.e. for η � k−1,
the boundary layer solution tends to its core value

Ψ
(1)
lc = −C(ξ), (5.5)

Ψ
(2)
lc = +C(ξ), (5.6)

which depends only on the arclength coordinate.
After having evaluated the boundary layer solution, we turn to the consideration

of the core region. Taking the limit k →∞ in (3.25) we obtain Laplace’s equation

∆Ψc = 0. (5.7)

As expected from observation of figures 3(d) and 4(d), this equation describes potential
flow, i.e. a flow whose vorticity Ωc = −∆Ψc is zero. The boundary conditions for the
core flow at the interface must be determined from the matching condition Ψcl = Ψlc.
These conditions (Bender & Orszag 1978) require thatΨcl – the core solution evaluated
at the interface – be equal to the continuation Ψlc of the boundary layer solution into
the core, given by (5.5), (5.6). Mathematically, these conditions are expressed as

Ψcl = ∓C(ξ), (5.8)

where the upper sign corresponds to the streamfunction for fluid (1) and the lower
sign to the streamfunction for fluid (2). In addition, the Gauss condition∫

Γ

∂ηΨc dΓ (s) = 0, (5.9)

has to be satisfied for fluids forming a simply connected domain. A composite solution

Ψa = Ψc ± Ce∓kζ , (5.10)

which approximates the exact solution over the whole area can be obtained by
adding to the core solution, the exponential part of the boundary layer solution,
where subscript a means approximate solution.

In summary, the Laplace equation (5.7) together with the Dirichlet boundary
condition (5.8) determine the core flow solutions in both fluids. The physical meaning
of this system can be most easily understood by reformulating the asymptotic theory
in terms of the velocity potential Φc defined by vξ = `−1∂Φc/∂ξ, vη = ∂Φc/∂η. Using
the incompressibility constraint and the relation ∂Ψc/∂ξ = −` ∂Φc/∂η which follows
from (3.11) in the limit k →∞ we obtain the equation

∆Φc = 0, (5.11)

with the boundary condition

∂Φc

∂η
= ± 1

k2

∂

∂ξ
(τ · t). (5.12)
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Point ∆Ψ for k = 5
√

12 ∆Ψ for k = 10
√

12
r = 0.5; ϕ = π/2 0.10574 0.05510
r = 0.5; ϕ = π/3 0.10539 0.05525
r = 0.5; ϕ = π/6 0.10555 0.05532
r = 0.75; ϕ = −π/6 0.10299 0.05533
r = 0.75; ϕ = −π/3 0.10329 0.05534
r = 0.75; ϕ = −π/2 0.10332 0.05519

Table 1. The exact values for some internal points are compared with asymptotic values for
k = 5

√
12, k = 10

√
12, where ∆Ψ = (Ψ (1) −Ψ (1)

a )/Ψ (1).

This boundary condition expresses that the normal velocity of the core flow at the
interface is equal to the rate of change of the volume flux through the thermocapillary
boundary layer.

Before engaging in a numerical treatment of the asymptotic system, we wish to
demonstrate for the example of a circular drop that the boundary layer theory indeed
provides an accurate approximation to the exact solution.

In the special case of the circular bubble or droplet we can easily determine the
asymptotic solution of equation (5.10) as

Ψ (1)
a = k−2

[
r − ek(r−1)

]
sin (ϕ), (5.13)

Ψ (2)
a = k−2

[
ek(1−r) − 1

r

]
sin (ϕ). (5.14)

The same expansions would have been obtained from solutions (4.18), (4.19) using
the asymptotic behaviour of modified Bessel functions for large arguments I1(kr) ∼
exp (kr)/(2πkr)1/2, K1(kr) ∼ exp (−kr)(π/2kr)1/2 (Abramowitz & Stegun 1984). In
table 1 the values of Ψ (1)

a are compared with the exact values Ψ (1) from (4.18) for two
values of the parameter k. Notice that the asymptotic solution is independent of the
parameter µ̂ and is already a good approximation for k = 3

√
12.

6. Numerical solution by a boundary element method
We have shown in the previous section that the flow in the core area for k � 1 is

determined by the system

∆Ψ = 0, (6.1)

Ψ = ∓(τ · t) at the interface Γ . (6.2)

Here we use the scaled streamfunction Ψ = k2Ψc. In the boundary condition the
upper sign corresponds to the streamfunction for fluid 1 and the lower sign to the
streamfunction for fluid 2, τ is the tangent vector to the interface Γ and t is the unit
vector in the direction of the temperature gradient.

Here we notice that by using the method of matched asymptotic expansions
we have transformed the problem from a fourth-order differential equation (3.25)
with boundary conditions (3.26)–(3.29), to a Laplace’s equation (6.1) with Dirichlet
boundary condition (6.2) for return flow. Both systems have no analytic solution for
droplets with complex shape, so that a numerical method must be invoked. However,
Laplace’s equation is much simpler to solve than the original problem. Therefore,
we shall discuss a numerical method for the solution of the system (6.1), (6.2) in a
complex geometry.
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grad T
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Figure 5. Isolines of the function Ψc inside and outside an elliptic droplet with eccentricity e2 = 0.6
for three directions of the temperature gradient: (a, d) horizontal; (b, e) vertical; (c, f) diagonal.

We chose the boundary element method for it is comparatively simple, provides a
good approximation and permits an efficient numerical implementation because the
solution in an area can be expressed in terms of its boundary values at the contour
Γ . With it the area need not be discretized but only the contour. The method is
thoroughly described by Brebbia, Telles & Wrobel (1984) and will not be repeated
here: therefore we go straight to discussion of the numerical results.

We investigate thermocapillary flows inside and outside droplets whose interface Γ
in polar coordinates is given by the two-parameter family

r2 =
1

1− e2 cos2 (mϕ)
. (6.3)

If m = 1 the curve represents an ellipse with eccentricity e. For m > 2 equation
(6.3) describes a ‘starfish’ with 2m rays and the parameter e determines size of the
rays. As we have seen in §4, the function Ψ represents the core flow. Therefore we
shall discuss the results only for this part of the asymptotic solution. Figure 5(a–c)
shows the core flow inside an elliptical droplet (µ̂ = 1, e2 = 0.6) for three directions
of the temperature gradient. One can see that the flow is no longer parallel to the
temperature gradient but depends on its direction. If the temperature gradient is
directed along the longer axis of the ellipse, then streamlines are curved outwards
(figure 5a). Conversely, if the temperature gradient is directed along the smaller axis
of the ellipse then the streamlines are curved inwards the axis (figure 5b). Both effects
become more pronounced as the eccentricity e is increased. For the case of a diagonal
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(b)

(c)

(a)

grad T
grad T

Figure 6. Isolines of the function Ψc inside and outside a ‘starfish’ with four rays (m = 2, e2 = 0.6)
for temperature gradients in the directions of the symmetry axes of curve Γ : (a,c) horizontal, (b,d)
diagonal.

temperature gradient (figure 5c) the flow is no longer symmetric to the temperature
gradient vector.

Figure 5(d–f) shows the function Ψ (2) (µ̂ = 0, e2 = 0.6) outside an elliptical
bubble. If ∇T is directed along the symmetry axis of the ellipse (figure 5d,e), then
the return flow shows similar behaviour as for circular bubbles (compare with figure
4c). However, if a diagonal temperature gradient is applied, then the centre of the
streamlines is shifted towards the longer axis of the ellipse, with increasing eccentricity
e (figure 5f).

Figure 6(a,b) shows the functions Ψ (1) for m = 2 and temperature gradient in the
direction of the symmetry axes of the curve. Here we see that in a finger, parallel to
∇T , Marangoni forces produce an intensive flow. In contrast, in a finger perpendicular
to ∇T the fluid is almost at rest (figure 6a).

The streamfunction outside the ‘starfish’ bubbles is more complicated (figure 6c,d).
In all cases one can see that the streamlines are compressed in regions of large
interface curvature. In such regions the Marangoni force changes rapidly, generating
large velocity gradients.
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7. Moving interfaces
After having elucidated the structure of flows with pinned interfaces, it is desirable

to understand the system in the case when movements of the interface are allowed.
The general moving-boundary problem for thermocapillary Hele-Shaw convection is
nonlinear and can be described by two different models. The first is if one fluid is
completely enclosed by the other (see figure 1b). Here two thin films are formed at the
top and bottom plates. These films are very thin compared to the cell height. But in
this case thermocapillary forces act on all sides of the droplet including the top and
bottom. In such a case the flow near the interface cannot be assumed to be a Poiseuille
flow and our theory is not applicable to this model. In the second model (figure 1c)
both fluids touch the plates. Here the assumption on the Poiseuille flow is valid;
however, the moving-interface problem involves complex small-scale phenomena in
the vicinity of the contact lines (see e.g. Dussan V. 1979; Carles et al. 1990) which are
beyond the scope of the present work. As a first step we shall therefore restrict our
attention to small displacements from equilibrium shape by analysing the stability of
an interface under an applied temperature gradient. More specifically, we look for
surface-wave instabilities in a Hele-Shaw cell for a semi-infinite fluid bounded by a
free surface. In contrast to our previous analysis we assume that the contact lines are
not fixed to the plates and the surface is free to move. Physically it may be identified
with the limiting case of non-wetting fluid on an ideal even plate. For our theoretical
explanations we choose Cartesian coordinates with the x-axis along the undisturbed
surface as in §4.1. The perturbation of the surface from the mean position (y = 0)
is determined by y = A(x, t). The problem is governed by the equation (3.25), which
with length scale L = h takes the form

∆(∆− 12)Ψ = 0. (7.1)

Since the surface is movable and consequently does not represent an isoline of the
streamfunction the boundary condition (3.26) is not valid. Instead of this condition
we must give a condition for the normal component of the surface stress. On the free
surface this condition balances the surface tension times curvature. Together with the
condition for shear stress (3.28), which balances the gradient of surface tension along
the interface, it establishes a force acting on the free surface. This can be written in
dimensionless form through the following vector equation (Pozrikidis 1992):

F = σ · n = (t · x− D)K(x) n− (τ · t) τ on y = A(x, t), (7.2)

where we have substituted equations (2.1), (3.1). The parameter D = α0/γβh describes
the change of the surface tension relative to the characteristic length. Following the
order of approximation for the surface tension given in (2.1) we require the parameter
to be large, D � 1. It denotes that the surface tension does not change much over
h. The dynamics come into the system with the kinematic boundary condition at the
free surface which in the form of the streamfunction can be written

∂A

∂t
= −∂Ψ

∂y

∂A

∂x
− ∂Ψ

∂x
on y = A(x, t). (7.3)

For the stability analysis it is convenient to decompose the streamfunction into two
components, namely the streamfunction of the basic flow (ψ0) and the streamfunc-
tion (ψ1) of the perturbation. The whole streamfunction becomes the sum of both
components

Ψ = ψ0 + ψ1.
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7.1. Temperature gradient across the surface

In this subsection we analyse the surface-wave instabilities due to a temperature
gradient with unit vector t = (0,∓1) across the surface which represent the Hele-
Shaw analogue to the classical surface-tension-driven Bénard convection. Here the
upper sign denotes heating the Hele-Shaw cell from the fluid side and cooling from
the gas side. The lower sign denotes the reverse case. As a basic state we take the
solution ψ0 = 0 since applying the temperature gradients to the undisturbed flat
surface does not produce a flow. Following the standard procedure of linear stability
theory we apply to the surface a disturbance with infinitesimal amplitude ε and a
wavelength l. In order to be consistent with the basic assumptions of our theory we
require l > h. Furthermore we introduce normal modes

ψ1(x, y, t) = εH(y) exp (λt+ iqx), (7.4)

A(x, t) = ε exp (λt+ iqx), (7.5)

where λ is the growth rate and q = 2πh/l is the dimensionless wavenumber of
perturbations. With the condition for the wavelength l the wavenumber must belong
to the interval 0 < q < 2π. The governing equation (7.1) is already linear and the
condition (7.2) can be written in a linear approximation as follows:

σ ·N = −D A′′x N ± A′x T on y = 0, (7.6)

where N = (0, 1) and T = (1, 0). Substituting (7.4), (7.5) into (7.1), (7.6) and omitting
terms with order higher than ε we obtain a system for the function H(y):

H (4)(y)− (12 + 2q2)H ′′(y) + q2(12 + q2)H(y) = 0, (7.7)

H ′′′(0)− (12 + 3q2)H ′(0) = iq3D, (7.8)

H ′′(0) + q2H(0) = ±iq. (7.9)

In order to obtain the condition (7.8) we have taken the derivative with respect to x
of the normal component of the surface stress and used the boundary condition (3.9)
to eliminate the pressure. The kinematic condition takes the form

λ = −iqH(0), (7.10)

which leads to the expression for the growth rate λ of the disturbances

λ =
6Dq3

2(q3(12 + q2)1/2 − q4 − 12q2 − 36)
∓ q2(q2 + 6− q(12 + q2)1/2)

2(q3(12 + q2)1/2 − q4 − 12q2 − 36)
. (7.11)

Both terms on the right-hand side are negative for all values of q from the interval
0 < q < 2π. Therefore the basic state ψ0 = 0 is stable to the infinitesimal surface
deformations if the heating is applied from the gas side, corresponding to the positive
sign in (7.11). If the system is heated from the fluid side (corresponding to the negative
sign in (7.11)) the system becomes unstable (λ > 0) if D is smaller than the critical
value

Dc =
6 + q2 − q(12 + q2)1/2

6q
. (7.12)

The stability diagram corresponding to the neutral curve (7.12) is shown in figure 7(a).
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Figure 7. (a) Neutral stability curve of a flat interface heated from the fluid side.
(b) Growth rate for D = 10.

Here we can see that for D � 1 the basic state becomes unstable for the long-
wavelength perturbations. In this regime the amplitude of perturbations becomes
larger and larger. Since the fluid is semi-infinite and there are no obstacles to the
motion of the surface, the instability must lead to a fingering. It is similar to the
interface instability in a Hele-Shaw cell observed by Saffman & Taylor (1958), where
a less viscous fluid displaces a more viscous fluid. The physical mechanism of the
instability (7.12) is very similar to that of long-wave instability in Bénard–Marangoni
convection theoretically predicted by Scriven & Sternling (1964) and experimentally
observed by VanHook et al. (1995). Indeed, a weak displacement of the interface
towards the hot side creates a Marangoni flow which reinforces the ‘erosion’ of
the interface. In contrast to the Bénard–Marangoni problem, however, the present
long-wave instability cannot be supplanted by a short-wave instability because the
temperature field does not change (Pe � 1). As a result, the Hele-Shaw geometry is
well suited to studying the long-wave-instability in its pure form.

7.2. Temperature gradient along the surface

In this case the vector t = (1, 0) is directed along the x-axis. The basic state here is the
steady-state solution for a linear interface (see §4.1). Then the whole streamfunction
is given by

Ψ =
1− e

√
12y

12
+ ψ1.

Analogously to the previous section we introduce normal modes (7.4), (7.5), and
substitute them into the governing equation and the boundary conditions to obtain
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the following system for the function H(y):

H (4)(y)− (12 + 2q2)H ′′(y) + q2(12 + q2)H(y) = 0, (7.13)

H ′′′(0)− (12 + 3q2)H ′(0) = iq3D, (7.14)

H ′′(0) + q2H(0) =
√

12. (7.15)

Here it is assumed that the surface tension does not change much over l (D � l). The
kinematic boundary condition becomes

λ = −iq

(
H(0)− 1√

12

)
. (7.16)

Since the perturbations will move with the basic flow, the complex eigenvalue λ can
be decomposed into two components

λ = λr + iλi,

where λr is the growth rate and λi is the phase speed of disturbances. A straightforward
computation leads to the following expressions for λr and λi:

λr =
3Dq3

q3(12 + q2)1/2 − q4 − 12q2 − 36
, (7.17)

λi =
q2[(q2 − 6)(12 + q2)1/2 − q(q2 + 6)]√
12(q3(12 + q2)1/2 − q4 − 12q2 − 36)

. (7.18)

An analysis of (7.17) shows that λr < 0. Therefore the basic flow is stable to small
deformation of the surface for all values of q = (0–2π). As a result, there is no
counterpart to the hydrothermal-wave instability (Smith & Davis 1983) in a Hele-
Shaw cell.

8. Conclusions
In this work we have investigated the thermocapillary flow in two immiscible fluids

confined in a Hele-Shaw cell. The main results can be summarized as follows.
(1) The thermocapillary Hele-Shaw problem can be solved exactly for linear and

circular interfaces. For a linear interface the flow is parallel to the interface and sym-
metric. For circular droplets there are two parameters which determine the structure
of the flow: µ̂ which describes the ratio between the viscosities inside and outside the
droplet and k which describes the relative aspect ratio.

(2) For large values of k an asymptotic theory can be obtained. This limit cor-
responds to large droplets. In this case the original problem can be transformed
into Laplace’s equation with a Dirichlet boundary condition which can be solved
efficiently.

(3) For droplets with complex shapes the structure of the flow depends on the
parameter k as well as on the droplet geometry and the direction of the temperature
gradient.

(4) For a semi-infinite fluid bounded by a free movable surface a long-wavelength
instability is predicted due to the temperature gradient across the surface when heating
the Hele-Shaw cell from the liquid side and cooling from the gas side.

The present theory represents the minimal model of surface-tension-driven flow in
a complex geometry. Although the theory is comparatively simple, its predictions,
in particular the structure of the flow field in the interior of a drop, should be
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amenable to experimental verification. Even if the flow is very slow due to the limited
temperature gradient in an experiment, it has a cumulative effect on Lagrangian
quantities such as the displacement of a tracer particle or a tiny spot of dye which
grow linearly with time. Thus, after sufficiently long observation time Lagrangian
displacements magnify to a macroscopic size L and become observable. For instance,
the boundary layer velocity in a drop of silicone oil (h = 1 mm, L = 10 mm) exposed
to a weak temperature gradient β = 10 K m−1 is as small as 0.063 mm s−1 which
may appear unsettling at first glance. However, after an observation time of roughly
150 s, a particle will have travelled a distance of the order L.

Our theory defines a simple conceptual framework for the study of complex
thermocapillary phenomena that would be difficult to investigate in the general three-
dimensional setting. For instance, the two-dimensional Hele-Shaw geometry offers an
attractive environment to study Marangoni convection in chemically reacting fluids or
in fluids containing surfactants without the need to take into account the nonlinearity
of the Navier–Stokes equation and the buoyancy force. In this context, it would
be interesting to extend the experiments of Park, Maruvada & Yoon (1994) to the
non-wetting case treated in the present paper.

Finally we want to discuss the behaviour of bubbles in a non-wetting fluid with
a movable interface due to thermocapillary forces. The case of small circular non-
deformable bubbles was considered theoretically by Siekmann (1979). Such bubbles
move with a constant velocity Um in the direction of the temperature gradient. The
migration velocity decreases with increasing radius of the bubbles as Um ∼ R−1.
However, for increasing radius the capillary forces are not strong enough to fix the
shape and the bubble cannot be assumed undeformable. In order to understand
qualitatively the behaviour of large bubbles we cut the surface of the bubble into
parts so that in each part the surface can be assumed linear. To the parts that are
parallel to the temperature gradient the results from §7.2 can be applied. Here the
surface is stable to small deformations. For the parts that are perpendicular to the
temperature gradient there are two possibilities depending on the relative arrangement
of fluid and gas phases with respect to the direction of the temperature gradient (see
§7.1): the shape of the bubble at the cold side is stable to small surface deformations
and becomes unstable at the hot side. Here the surface moving in the direction
of the temperature gradient can develop a nose. Since the volume of a bubble is
constant it can lead to singularities in the nose, similar to the studies by Almgren
(1996).

We are grateful to Ch. Karcher and V. Galindo for useful discussions and to J. W.
M. Bush for making available the manuscript (Bush 1997) prior to publication. One
of us (W. B.) acknowledges the Sächsisches Staatsministerium für Wissenschaft und
Kunst for financial support.

Appendix. Discussion of the thermal model
In this Appendix we wish to demonstrate that the deviation of the fluid temperature

from the temperature gradient in the plates is of the same order as other effects
neglected in the derivation of the Hele-Shaw model.

First we assume that the plates of the cell have infinite thermal conductivities
and a linear temperature gradient is applied. Further it is assumed that the Péclet
number of the fluids Pe = uh/κ, where κ is thermal diffusivity, is sufficiently small
(Pe� 1). This condition expresses that the temperature in the fluids is predominantly



328 W. Boos and A. Thess

k = 0 k ≠ 0

k ∞

T = bx

z

x

Figure 8. Sketch of the perturbed temperature distribution due to
the finite heat conductivity of the fluid.

transported by diffusivity. This regime frequently arises in creeping flow. For our
example with silicone oil NM10 with h = 1 mm and β = 10 K m−1 we have
Pe = 0.63.

The effect of finite heat diffusivity of the fluids is to bend the temperature isolines.
This is due to the fact that the fluids, separated by a linear interface x = 0, cannot at
the same time possess a temperature distribution T = βx and satisfy the condition
λ1∂xT1 = λ2∂xT2 of heat flux continuity where λ1 and λ2 are the heat conductivities
of the fluids. Obviously this effect is most strongly pronounced if the temperature
gradient is perpendicular to the interface, and the effect does not exist if the tem-
perature gradient is parallel to the interface. Therefore we shall consider the worst
case, sketched in figure 8, where the temperature gradient is perpendicular and the
left-hand fluid has zero heat conductivity.

The temperature distribution T (x, z) in the right-hand fluid of figure 8 is described
by the Laplace equation

∆T = 0, (A 1)

and the boundary conditions

T (x, h/2) = T (x,−h/2) = βx, (A 2)

∂xT (0, z) = 0. (A 3)

The general solution to this equation which converges to βx as x→ ∞ and which is
symmetric with respect to the mid-plane z = 0 is

T = βx+
∑
n

Gn exp (−knx) cos (knz), (A 4)

where β can be easily identified with the temperature gradient and Gn are constants,
which must be determined from boundary conditions. From boundary condition (A 2)
we conclude that kn = π(2n − 1)/h (n = 1, 2, 3, . . .). In order to satisfy the boundary
condition (A 3) we evaluate ∂xT (0, z) as

∂xT (0, z) = β −
∞∑
n=1

Gnkn cos (knz). (A 5)

Using the identity

1 =

∞∑
n=1

(−1)n+1 4

π(2n− 1)
cos (knz) (A 6)
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we obtain the coefficients Gn = (−1)n+14βh/[π2(2n − 1)2]. Substitution of these con-
stants into the series of (A 4) and averaging over the height h lead to the inequalities

8βh

π3

∞∑
n=1

exp (−knx)

(2n− 1)3
6

8βh

π3

∞∑
n=1

1

(2n− 1)3
<
βh

π
.

With this, the average temperature in right-hand liquid is given by

T̄ ≈ βx+
βh

π
= βx+ O(h). (A 7)

For small h the second term can be neglected, and the distribution of temperature in
liquid (2) can be approximated by T̄ = βx as can the distribution of temperature in
the plates of the cell. Similar equations can be obtained if the thermal conductivities of
both liquids are not zero. The fact that the temperature in the middle of the interface
is higher leads to the generation of three-dimensional rolls. Since such a flow is
directed towards the plates, it will tend to homogenize the temperature perturbation.
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